Does Dose Calculation Algorithm Matter for Lung Cancer Treatment Plans in Radiation Therapy

Bamdev Singh

Abstract


Dose calculation algorithm in external beam photon radiation therapy forms an integral part of the treatment planning system (TPS). The accurate radiation dose estimation by dose calculation algorithm will prevent the over-dosage of normal tissues or under-dosage of tumor volume. In real clinical situations, however, accuracy of dose calculation algorithms can be limited, especially when the low-density tissue heterogeneities are encountered along the beam path. The main purpose of this article is to provide a brief communication on two most recent photon dose calculations algorithms: Analytical Anisotropic Algorithm and Acuros XB algorithm for lung cancer. The clinical application of these algorithms for lung cancer was chosen since lung involves low-density tissue heterogeneity, which has the greatest impact on the accuracy of dose calculation algorithms.


Keywords


Dose calculation algorithm, treatment planning, lung cancer

Full Text:

PDF

References


Lu L. Dose calculation algorithms in external beam photon radiation therapy. Int J Cancer Ther Oncol 2013; 1(2):01025. DOI: http://dx.doi.org/10.14319/ijcto.0102.5

Rana S, Rogers K. Dosimetric evaluation of Acuros XB dose calculation algorithm with measurements in predicting doses beyond different air gap thickness for smaller and larger field sizes. J Med Phys 2013; 38: 9-14. DOI: http://dx.doi.org/10.4103/0971-6203.106600

Ulmer W, Harder D. A Triple Gaussian Pencil Beam Model for Photon Beam Treatment Planning, Z. Med Phys 1995; 5:25-30.

Van Esch A, Tillikainen L, Pyykkonen J, Tenhunen M, Helminen H, Siljamaki S, et al. Testing of the analytical anisotropic algorithm for photon dose calculation. Med Phys 2006; 33:4130-48. DOI: http://dx.doi.org/10.1118/1.2358333

Vassiliev ON, Wareing TA, McGhee J, Failla G, Salehpour MR, Mourtada F. Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams. Phys Med Biol 2010; 55:581-98. DOI: http://dx.doi.org/10.1088/0031-9155/55/3/002

Han T, Followill D, Mikell J, Repchak R, Molineu A, Howell R, Salehpour M, Mourtada F. Dosimetric impact of Acuros XB deterministic radiation transport algorithm for heterogeneous dose calculation in lung cancer. Med Phys. 2013;40(5):051710. DOI: http://dx.doi.org/10.1118/1.4802216

Rana S. Clinical dosimetric impact of Acuros XB and analytical anisotropic algorithm (AAA) on real lung cancer treatment plans: review. Int J Cancer Ther Oncol 2014; 2(1):02019. DOI: http://dx.doi.org/10.14319/ijcto.0201.9

Kathirvel M, Subramanian S, Clivio A, et al. Critical appraisal of the accuracy of Acuros-XB and Anisotropic Analytical Algorithm compared to measurement and calculations with the compass system in the delivery of RapidArc clinical plans. Radiat Oncol 2013; 8:140. DOI: http://dx.doi.org/10.1186/1748-717X-8-140

Kroon PS, Hol S, Essers M. Dosimetric accuracy and clinical quality of Acuros XB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans. Radiat Oncol. 2013; 8(1):149. DOI: http://dx.doi.org/10.1186/1748-717X-8-149

Liu HW, Nugent Z, Clayton R, Dunscombe P, Lau H, Khan R. Clinical impact of using the deterministic patient dose calculation algorithm Acuros XB for lung stereotactic body radiation therapy. Acta Oncol. 2013 Aug 19. [Epub ahead of print] DOI: http://dx.doi.org/10.3109/0284186X.2013.822552

Rana S, Rogers K, Pokharel S, Cheng C. Evaluation of Acuros XB algorithm based on RTOG 0813 dosimetric criteria for SBRT lung treatment with RapidArc. J Appl Clin Med Phys 2014; 15:4474.

Fogliata A, Nicolini G, Clivio A, Vanetti E, Cozzi L. Critical appraisal of Acuros XB and Anisotropic Analytic Algorithm dose calculation in advanced non-small-cell lung cancer treatments. Int J Radiat Oncol Biol Phys. 2012;83(5):1587-95. DOI: http://dx.doi.org/10.1016/j.ijrobp.2011.10.078

Hawke S, Torrance A, Tremethick L. Evaluation of planned dosimetry when beam energies are substituted for a fraction of the treatment course. Int J Cancer Ther Oncol 2013; 1(2):01014. DOI: http://dx.doi.org/10.14319/ijcto.0102.4

Pokharel S. Dosimetric impact of mixed-energy volumetric modulated arc therapy plans for high-risk prostate cancer. Int J Cancer Ther Oncol 2013;1(1):01011. DOI: http://dx.doi.org/10.14319/ijcto.0101.1

Oyewale S. Dose prediction accuracy of collapsed cone convolution superposition algorithm in a multi-layer inhomogenous phantom. Int J Cancer Ther Oncol 2013; 1(1):01016. DOI: http://dx.doi.org/10.14319/ijcto.0101.6

Chaikh A, Giraud J, Balosso J. A method to quantify and assess the dosimetric and clinical impact resulting from the heterogeneity correction in radiotherapy for lung cancer. Int J Cancer Ther Oncol 2014; 2(1):020110. DOI: http://dx.doi.org/10.14319/ijcto.0201.10


Refbacks

  • There are currently no refbacks.